Quantum Algorithms for Finite-horizon

Introduction

 Markov decision processes (MDPs) provide a framework for modelling
decision-making in various environments.
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 However, MDPs often face significant computational challenges in
practice, e.g. curse of dimensionality.

* Quantum computing has shown a significant speedup over classical
computing in terms of time complexity for certain problems.
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* Question: Can one design quantum algorithms that are more efficient than
classical algorithms in solving time-dependent and finite-horizon MDPs?
* Contributions:
1. Exact dynamics setting: (a) derive a new classical lower bound;
(b) propose Quantum Value Iteration algorithms QVI-1 and QVI-2;
(c) propose a new quantum subroutine, Quantum Mean Estimation
with Binary Oracle.
2. Generative model setting: (a) propose quantum algorithms QVI-3 and
QVI-4; (b) derive classical and quantum lower bounds.
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MDP Preliminaries

A time-dependent and finite-horizon MDP is defined as a 5-tuple

M = (S, A, {PuIn=s, (rnzo, H).

e State space § and action space A are discrete and finite sets.
 The total time horizon H is a positive integer. L
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Sh+1 ~Pn (- |Sn, an)
* Findapolicym:§ X [H] = A that maximizes the expected cumulative reward (V-value or Q-value
function) over a finite number of time steps, where V-value and Q-value functions are defined as:

*  Py(sy+1lsn, ap) is a transition probability.
« Areward (s, ay) is a scalar in [0,1].
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« Vy(s):=max V] (s), Q,(s,a) == max Q; (s,a) and * := argmax V.
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A toy example: Robot-in-Maze '

e States: positions in the maze.

 Actions: movements (up, down, left, right).

* Reward: r,(sp, ay) = 0if s, is the exit; otherwise, 1, (sy, a) = —1.
* Objective: minimize the expected number of steps to reach the exit.
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Background

e Classical algorithms assume they have access to a classical

* Classical value iteration (VI) algorithm can obtain 7™ and V,,

Exact Dynamics Setting

Agent

Reward . K
Perceived! .. Action a
rh—1(Sh-1, @n-1) h

o n(nan) m—

Sh+1 ~Pr( ISn,an)

to the agent. (& The robot has the map of the maze.)

State sy,

Assumption: Dynamics of the environment are fully known L

oracle Oy;: (s,a,h,s’) » (rh(s, a), P, (s'|s, a)).
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with 0(.5 AH) querles.to O,M' o Define Pusals) = Pu(s'15,a)
* Define Bellman optimality value operator © ------------------ !

[Th(Vh+1)]s = gleil%{rh(s’ Cl) + Pf’111|s,;i/h+1}- Map

. . h . E - t%l
* Vlalgorithm repeatedly appliesT" on V.1 ina =,
backward manner with I/; = 0 and updates the policy Entry

following (s, h) = argmax {r,(s,a) + Pgls,th+1}'
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Summary of the Results

Table 1. Classical and quantum query complexities for solving general finite-horizon MDPs

“ Classical query complexity Quantum query complexity

Upper bound Upper bound

0(S2AH)

Optimal 7*, V{ Q(S524) O(S*>VAH) [QVI-1]

€-accurate estimate of
m* and {V; 3420

0(S2AH) Q(S524) O(S'5VAH? /) [QVI-2]

Classical Lower Bound

|{ Theorem (informal version): Given access to the classical oracle Oy, any algorithm, which
| outputs e-approximations of {V;‘,}I,’l';(} or " with probability at least 0.9, must require at least

'\ Q(SZA) queries to 0, on the worst case of input M. ,

* Note that the above theorem implies that it also requires at least Q(S?A) queries
to O, to obtain {V; }}=5 or 7*.

* Question: whether quantum algorithms can break this barrier in the dependence
on action space size (|A| := A) or state space size (|S| := §)?

Quantum Oracle of Finite-horizon MDPs

|{ Definition: A quantum oracle of a finite-horizon MDP is a unitary operator Og, such that

! Ogac: IsHaX h) sM0)0) = [s)a)m) sy, (s, a) Pp(s'|s, a))
I forall(s,a,h,s') ES XAX|H]XS.
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Quantum Speedup on Action Space Size (4)

Quantum Maximum Searching (QMS) Algorithm [Durr et al., 1999]
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| Problem: For an unsorted list f € RY, one wants to find the index i such that f(i) = nel[azxﬁ (). :
j

* Classical algorithm: ©(N) queries to the vector f.

* Quantum algorithm: @(\/N) queries to the vector f.

 Suppose N = 1,000,000 and it takes 1 second for each query, then the classical algorithm
needs roughly 11.5 days, but QMS algorithm only needs roughly 17 minutes!

Quantum Value Iteration QVI-1 Algorithm
 Mainidea: apply QMS algorithm when taking the maximum over the whole action space in
the classical value iteration algorithm.
* Output: optimal policy m* and optimal V-value function V.
* Query complexity: 5(52\/XH) queries to the quantum oracle Ogyy .

Quantum Speedup on State Space Size (S)

New Quantum Subroutine: Quantum Mean Estimation with Binary Oracles (QMEBO)
« Goal: obtain an e-estimate [l of u = E[f(x) € RY|x~p]with probability at least 1 — §.

* Query complexity: O ((ﬂ + \/%) log (%)) queries to the function f.

€

Quantum Value Iteration QVI-2 Algorithm
* Mainidea: apply QMEBO to obtain g-estimates of P,fls,thﬂ based on QVI-1 algorithm.
- Output: e-approximations of m*and {V;}} - .
 Query complexity: 0(S13vVAH? /€) queries to the quantum oracle Ogr-

Generative Model Setting

Background S
e Assumption: Dynamics of the environment are unknown to - > _

the agent. (& The robot does not have the map of the maze.) sttes: Lrh_l(sh_l,ah_g s Action a
* Classical algorithms assume they have access to a classical « r“(sh’“fj}”” :

generative model G to sample transitions:

, i.id. ,
(s,a,h Generative Model sp(s,a) ~ Pysari=1,..,N
Sensor

(<& The robot is equipped with a sensor.) [m]: -~ ‘g,
« Optimization goal: obtain e-approximations of 7*, {V,;}31 25

Sh41 ~Pr (- |Sn, an)

I Exit

Summary of the Results

Table 2. Classical and quantum sample complexities for solving general finite-horizon MDPs

Goal: obtain an Classical query complexity Quantum query complexity

€-accurate
estimate of

3 * ~ 3 ~ 2.5 B r
{Qr}no 0 (S[;I ) [Li et al., 2020] a (S‘:‘;’ ) 0 (SA’: ) [QVi-4] 5 (SAI: )
. SAH2'5
0 (=) ravi-a)
) : = 3 — 1.5
', (Vith=o O (Silj ) [Li et al., 2020] y) (5‘1‘;’ ) - w;m 5 (s\/ZEH )
0( - ) [QVI-3]

Quantum Generative Oracle of Finite-horizon MDPs

Definition: A quantum generative oracle of a finite-horizon MDP is a unitary operator G such that
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Quantum Mean Estimation (QME) Algorithms [Viontanaro, 2015]
e QME1 is a quantum version of Hoeffding’s inequality.

e L o

* Hoeffding’s inequality implies that O (u?/e?) classical samples are required.
* QME1 only requires O(u/€) quantum samples.

e QME2 is a quantum version of Chebyshev’s inequality.
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| Problem: for a random variable X with finite non-zero variance 2, one needs to obtainan e- |

I"estimate of E[X]. '
| 7/

* Chebyshev’s inequality implies that O (o2 /e?) classical samples are required.
* QME2 only requires 0(o/€) quantum samples.

Quantum Value Iteration QVI-3 Algorithm
* Mainidea: QVI-3 is similar to QVI-2, but it applies QME1 to obtain %-estimates of Pi’{|s,th+1'

* Output: e-approximations of *and {V;}{_,.
3

.~ (sVA . :
* Sample complexity: O ( va ) queries to the quantum generative oracle .

Quantum Value Iteration QVI-4 Algorithm

* Main idea: QVI-4 incorporates quantum adaptations of “variance reduction” and “total variance”
techniques from [Sidford et al., 2018] by applying QME1 and QME?2 algorithm:s.

* QOutput: e-approximations of 7*, {V},}1 -5 and {Q}}1 .

.~ (SAH?> : .
* Sample complexity: O ( - ) queries to the quantum generative oracle §.

Classical and Quantum Lower Bounds

* Reduction: We show that solving a finite-horizon MDP can be reduced to solving an infinite-horizon
MDP. Therefore, the lower bounds of solving finite-horizon MDP inherits from those of the
infinite-horizon MDP [Wang et al., 2021].

* Implication: QVI-3 and QVI-4 are asymptotically optimal, up to log terms, for computing e-

S: state space size
A: action space size
H: total time horizon
€: error term

6: failure probability

References

0(-) and Q(.) ignore logarithmic factors

approximations of *, {V;; =4 and {Q;,}5 =5, provided a constant time horizon.

. [Durr et al., 1999] A quantum algorithm for finding the minimum. Christoph Durr, Peter Hoyer.

. [Lietal., 2020] Breaking the sample size barrier in model-based reinforcement learning with a generative model. Gen Li, Yuting Wei, Yuejie Chi, Yuxin Chen
. [Montanaro, 2015] Quantum speedup of Monte Carlo methods. Ashley Montanaro.

. [Sidford et al., 2018] Near-optimal time and sample complexities for solving Markov decision processes with a generative model. Aaron Sidford, Mengdi Wang, Xian Wu, Lin F. Yang, Yinyu Ye.
. [Wang et al., 2021] Quantum algorithms for reinforcement learning with a generative model. Daochen Wang, Aarthi Sundaram, Robin Kothari, Ashish Kapoor, Martin Roetteler




	Slide 1

