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Summary of the Results

Classical Lower Bound

Quantum Oracle of Finite-horizon MDPs

Quantum Speedup on Action Space Size 𝑨  
• Quantum Maximum Searching (QMS) Algorithm [Durr et al., 1999]

• Quantum Value Iteration QVI-1 Algorithm
• Main idea: apply QMS algorithm when taking the maximum over the whole action space in 

the classical value iteration algorithm.
• Output: optimal policy 𝜋∗ and optimal V-value function 𝑉0

∗.

• Query complexity: ෩𝑶(𝑺𝟐 𝑨𝑯) queries to the quantum oracle 𝑂𝒬ℳ .

Quantum Speedup on State Space Size 𝐒  
• New Quantum Subroutine: Quantum Mean Estimation with Binary Oracles (QMEBO)

• Goal: obtain an 𝜖-estimate Ƹ𝜇 of 𝜇 = 𝔼 𝑓 𝑥 ∈ ℝ𝑁 𝑥~𝑝 with probability at least 1 − 𝛿.

• Query complexity: 𝑂
𝑁

𝜖
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𝑁

𝜖
log
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𝛿
 queries to the function 𝑓.

• Quantum Value Iteration QVI-2 Algorithm
• Main idea: apply QMEBO to obtain 

𝝐

𝑯
-estimates of 𝑃ℎ|𝑠,𝑎

𝑇 𝑉ℎ+1 based on QVI-1 algorithm.

• Output: 𝝐-approximations of 𝝅∗and {𝑽𝒉
∗ }𝒉=𝟎

𝑯−𝟏.

• Query complexity: ෩𝑶(𝑺𝟏.𝟓 𝑨𝑯𝟑/𝝐) queries to the quantum oracle 𝑂𝒬ℳ .

Exact Dynamics Setting

Background

Summary of the Results

Quantum Generative Oracle of Finite-horizon MDPs

Quantum Mean Estimation (QME) Algorithms [Montanaro, 2015]

• QME1 is a quantum version of Hoeffding’s inequality.

• QME2 is a quantum version of Chebyshev’s inequality.

Quantum Value Iteration QVI-3 Algorithm

Quantum Value Iteration QVI-4 Algorithm

Classical and Quantum Lower Bounds

Generative Model Setting

Goal
Classical query complexity Quantum query complexity

𝐔𝐩𝐩𝐞𝐫 𝐛𝐨𝐮𝐧𝐝 𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝 𝐔𝐩𝐩𝐞𝐫 𝐛𝐨𝐮𝐧𝐝

Optimal 𝜋∗, 𝑉0
∗ 𝑂(𝑆2𝐴𝐻) 𝛀(𝑺𝟐𝑨) ෩𝑶(𝑺𝟐 𝑨𝑯) [QVI-1]

𝜖-accurate estimate of 
𝜋∗ and {𝑉ℎ

∗}ℎ=0
𝐻−1 𝑂(𝑆2𝐴𝐻) 𝛀(𝑺𝟐𝑨) ෩𝑶(𝑺𝟏.𝟓 𝑨𝑯𝟑/𝝐) [QVI-2] 

Table 1. Classical and quantum query complexities for solving general finite-horizon MDPs

• Markov decision processes (MDPs) provide a framework for modelling 
decision-making in various environments.

• However, MDPs often face significant computational challenges in 
practice, e.g. curse of dimensionality.

• Quantum computing has shown a significant speedup over classical 
computing in terms of time complexity for certain problems.

• Question: Can one design quantum algorithms that are more efficient than 
classical algorithms in solving time-dependent and finite-horizon MDPs?

• Contributions:
1. Exact dynamics setting: (a) derive a new classical lower bound; 

(b) propose Quantum Value Iteration algorithms QVI-1 and QVI-2; 
(c) propose a new quantum subroutine, Quantum Mean Estimation 
with Binary Oracle.

2. Generative model setting: (a) propose quantum algorithms QVI-3 and 
QVI-4; (b) derive classical and quantum lower bounds.
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Perceived!

• Assumption: Dynamics of the environment are fully known 
to the agent. (⇔ The robot has the map of the maze.)

• Classical algorithms assume they have access to a classical 

oracle 𝑂ℳ : 𝑠, 𝑎, ℎ, 𝑠′ ↦ 𝑟ℎ 𝑠, 𝑎 , 𝑃ℎ 𝑠′ 𝑠, 𝑎 .

• Classical value iteration (VI) algorithm can obtain 𝜋∗ and 𝑉0
∗ 

with 𝑂 𝑆2𝐴𝐻  queries to 𝑂ℳ .
• Define Bellman optimality value operator 

𝒯ℎ 𝑉ℎ+1 𝑠 ≔ max
𝑎∈𝒜

{𝑟ℎ 𝑠, 𝑎 + 𝑃ℎ|𝑠,𝑎
𝑇 𝑉ℎ+1}.

• VI algorithm repeatedly applies 𝒯ℎ on 𝑉ℎ+1 in a 
backward manner with 𝑉𝐻 = 𝟎 and updates the policy 

following 𝜋 𝑠, ℎ = argmax
𝑎∈𝒜

 {𝑟ℎ 𝑠, 𝑎 + 𝑃ℎ|𝑠,𝑎
𝑇 𝑉ℎ+1}.

Theorem (informal version): Given access to the classical oracle 𝑂ℳ , any algorithm, which 

outputs 𝝐-approximations of {𝑽𝒉
∗ }𝒉=𝟎

𝑯−𝟏 or 𝝅∗ with probability at least 0.9, must require at least 

𝛀 𝑺𝟐𝑨  queries to 𝑂ℳ  on the worst case of input ℳ.

• Note that the above theorem implies that it also requires at least Ω 𝑆2𝐴  queries 
to 𝑂ℳ  to obtain {𝑉ℎ

∗}ℎ=0
𝐻−1 or 𝜋∗.

• Question: whether quantum algorithms can break this barrier in the dependence 
on action space size 𝓐 ≔ 𝑨  or state space size 𝓢 ≔ 𝑺 ? 

Definition: A quantum oracle of a finite-horizon MDP is a unitary operator 𝑂𝒬ℳ  such that

for all 𝑠, 𝑎, ℎ, 𝑠′ ∈ 𝒮 × 𝒜 × 𝐻 × 𝒮.

𝑂𝒬ℳ : 𝑠 𝑎 ℎ 𝑠′ 0 0 ↦ 𝑠 𝑎 ℎ 𝑠′ 𝑟ℎ(𝑠, 𝑎) 𝑃ℎ(𝑠′|𝑠, 𝑎)

A time-dependent and finite-horizon MDP is defined as a 5-tuple 

ℳ = 𝒮, 𝒜, {𝑃ℎ}ℎ=0
𝐻−1, {𝑟ℎ}ℎ=0

𝐻−1, 𝐻 .

Optimization goal

A toy example: Robot-in-Maze

MDP Preliminaries
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State 𝑠ℎ

Reward
 rh−1(sh−1, 𝑎ℎ−1)

rh(sh, 𝑎ℎ)

Action 𝑎ℎ

𝑠ℎ+1 ~𝑃ℎ(⋅ |𝑠ℎ, 𝑎ℎ)

Entry

Exit

Problem: For an unsorted list 𝑓 ∈ ℝ𝑁, one wants to find the index 𝑖 such that 𝑓 𝑖 = max
𝑗∈[𝑁]

 𝑓 𝑗 .

• Classical algorithm: Θ N  queries to the vector 𝑓.

• Quantum algorithm: Θ 𝑁  queries to the vector 𝑓.

• Suppose N = 1,000,000 and it takes 1 second for each query, then the classical algorithm 
needs roughly 𝟏𝟏. 𝟓 days, but QMS algorithm only needs roughly 𝟏𝟕 minutes!

• Assumption: Dynamics of the environment are unknown to 
the agent. (⇔ The robot does not have the map of the maze.)

• Classical algorithms assume they have access to a classical 
generative model 𝑮 to sample transitions:

    (⟺ The robot is equipped with a sensor.) 
• Optimization goal: obtain 𝜖-approximations of 𝜋∗, {𝑉ℎ

∗}ℎ=0
𝐻−1 

and {𝑄ℎ
∗ }ℎ=0

𝐻−1.

Environment

Agent

State 𝑠ℎ

Reward
 rh−1(sh−1, 𝑎ℎ−1)

rh(sh, 𝑎ℎ)

Action 𝑎ℎ

𝑠ℎ+1 ~𝑃ℎ(⋅ |𝑠ℎ, 𝑎ℎ)

Unperceived!

Generative Model(s, 𝑎, ℎ) sh
i s, 𝑎 ∼ 𝑃h|s,𝑎 , 𝑖 = 1, … , 𝑁

i.i.d.

Entry

Exit

Sensor

Definition: A quantum generative oracle of a finite-horizon MDP is a unitary operator 𝒢 such that

for all 𝑠, 𝑎, ℎ ∈ 𝒮 × 𝒜 × 𝐻 , where |w𝑠′⟩ are arbitrary auxiliary states.

𝒢: 𝑠 𝑎 ℎ 0 0 ↦ 𝑠 𝑎 ℎ 

𝑠′∈𝒮

𝑃ℎ 𝑠′ 𝑠, 𝑎 𝑠′ 𝑤𝑠′

Problem: for a random variable 𝑋 ∈ [0, 𝑢], one needs to obtain an 𝜖-estimate of 𝔼[𝑋]. 

• Hoeffding’s inequality implies that 𝑂(𝑢2/𝜖2) classical samples are required.
• QME1 only requires 𝑂(𝑢/𝜖) quantum samples.

• Chebyshev’s inequality implies that 𝑂(𝜎2/𝜖2) classical samples are required.
• QME2 only requires ෨𝑂(𝜎/𝜖) quantum samples.

Goal: obtain an 
𝝐-accurate 
estimate of

Classical query complexity Quantum query complexity

𝐔𝐩𝐩𝐞𝐫 𝐛𝐨𝐮𝐧𝐝 𝐋𝐨𝐰𝐞𝐫 𝐛𝐨𝐮𝐧𝐝 𝐔𝐩𝐩𝐞𝐫 𝐛𝐨𝐮𝐧𝐝 Lower bound

{𝑄ℎ
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𝑺𝑨𝑯𝟐.𝟓

𝝐
 [QVI-4] ෩𝛀

𝑺𝑨𝑯𝟏.𝟓

𝝐
 

𝜋∗, {𝑉ℎ
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𝐻−1 ෨𝑂
𝑆𝐴𝐻4

𝜖2  [Li et al., 2020] ෩𝛀
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𝝐𝟐  

෩𝑶
𝑺𝑨𝑯𝟐.𝟓

𝝐
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෩𝛀
𝑺 𝑨𝑯𝟏.𝟓

𝝐
 

෩𝑶
𝑺 𝑨𝑯𝟑

𝝐
 [QVI-3]

Table 2. Classical and quantum sample complexities for solving general finite-horizon MDPs

• Main idea: QVI-3 is similar to QVI-2, but it applies QME1 to obtain 
𝜖

𝐻
-estimates of 𝑃ℎ|𝑠,𝑎

𝑇 𝑉ℎ+1.

• Output: 𝝐-approximations of 𝝅∗and {𝑽𝒉
∗ }𝒉=𝟎

𝑯−𝟏.

• Sample complexity: ෩𝑶
𝑺 𝑨𝑯𝟑

𝝐
 queries to the quantum generative oracle 𝒢.

• Main idea: QVI–4 incorporates quantum adaptations of “variance reduction” and “total variance” 
techniques from [Sidford et al., 2018] by applying QME1 and QME2 algorithms.

• Output: 𝝐-approximations of 𝝅∗, {𝑽𝒉
∗ }𝒉=𝟎

𝑯−𝟏 and {𝑸𝒉
∗ }𝒉=𝟎

𝑯−𝟏. 

• Sample complexity: ෩𝑶
𝑺𝑨𝑯𝟐.𝟓

𝝐
 queries to the quantum generative oracle 𝒢.

• Reduction: We show that solving a finite-horizon MDP can be reduced to solving an infinite-horizon 
MDP. Therefore, the lower bounds of solving finite-horizon MDP inherits from those of the 
infinite-horizon MDP [Wang et al., 2021].

• Implication: QVI-3 and QVI-4 are asymptotically optimal, up to log terms, for computing 𝜖-
approximations of 𝜋∗, {𝑉ℎ

∗}ℎ=0
𝐻−1 and {𝑄ℎ

∗ }ℎ=0
𝐻−1, provided a constant time horizon.

Entry

Exit

Map

• State space 𝒮 and action space 𝒜 are discrete and finite sets.
• The total time horizon 𝐻 is a positive integer. 
• 𝑃ℎ(𝑠ℎ+1|𝑠ℎ , 𝑎ℎ) is a transition probability.
• A reward 𝑟ℎ(𝑠ℎ , 𝑎ℎ) is a scalar in 0,1 .

Denote 𝐻 = {0,1, … , 𝐻 − 1}.

• Find a policy 𝜋: 𝒮 × [𝐻] → 𝒜 that maximizes the expected cumulative reward (V-value or Q-value 
function) over a finite number of time steps, where V-value and Q-value functions are defined as:

• 𝑉ℎ
∗ 𝑠 ≔ max

𝜋
 𝑉ℎ

𝜋 𝑠 , 𝑄ℎ
∗ 𝑠, 𝑎 ≔ max

𝜋
 𝑄ℎ

𝜋(𝑠, 𝑎) and 𝜋∗ ≔ argmax
𝜋

 𝑉0
𝜋 .

𝑉ℎ
𝜋 𝑠 ≔ 𝔼 

𝑡=ℎ

𝐻−1

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 |𝜋, 𝑠ℎ = 𝑠 , 𝑄ℎ
𝜋 𝑠, 𝑎 ≔ 𝔼 

𝑡=ℎ

𝐻−1

𝑟𝑡 𝑠𝑡 , 𝑎𝑡 |𝜋, 𝑠ℎ = 𝑠, 𝑎ℎ = 𝑎 .

• States: positions in the maze.
• Actions: movements (up, down, left, right).
• Reward: 𝑟ℎ 𝑠ℎ , 𝑎ℎ = 0 if 𝑠ℎ is the exit; otherwise, 𝑟ℎ 𝑠ℎ , 𝑎ℎ = −1.
• Objective: minimize the expected number of steps to reach the exit.

Define 𝑃ℎ|𝑠,𝑎 𝑠′ = 𝑃ℎ(𝑠′|𝑠, 𝑎)

Problem: for a random variable 𝑋 with finite non-zero variance 𝜎2, one needs to obtain an 𝜖-
estimate of 𝔼[𝑋]. 
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